A New Approach For Hand Gestures Recognition Based on Depth Map Captured by RGB-D Camera
نویسندگان
چکیده
This paper introduces a new approach for hand gesture recognition based on depth Map captured by an RGB-D Kinect camera. Although this camera provides two types of information ”Depth Map” and ”RGB Image”, only the depth data information is used to analyze and recognize the hand gestures. Given the complexity of this task, a new method based on edge detection is proposed to eliminate the noise and segment the hand. Moreover, new descriptors are introduce to model the hand gesture. These features are invariant to scale, rotation and translation. Our approach is applied on French sign language alphabet to show its effectiveness and evaluate the robustness of the proposed descriptors. The experimental results clearly show that the proposed system is very satisfactory as it to recognizes the French alphabet sign with an accuracy of more than 93%. Our approach is also applied to a public dataset in order to be compared in the existing studies. The results prove that our system can outperform previous methods using the same dataset.
منابع مشابه
Persian sign language detection based on normalized depth image information
There are many reports of using the Kinect to detect hand and finger gestures after release of device by Microsoft. The depth information is mostly used to separate the hand image in the two-dimension of RGB domain. This paper proposes a method in which the depth information plays a more dominant role. Using a threshold in depth space first the hand template is extracted. Then in 3D domain the ...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملA Hand Gesture Recognition Library for a 3D Viewer Supported by Kinect’s Depth Sensor
In modern life, human–computer interaction has received the most interest from researchers, especially in developing new interaction methods. Microsoft’s Kinect sensor, which has integrated red-green-blue and depth (RGB+D) cameras, opens up new possibilities As well, many three-dimensional (3D) applications have been developed fashioning the computer world more natural and real for the user. In...
متن کاملAn Integrative Framework of Human Hand Gesture Segmentation for Human-Robot Interaction
This paper proposes a novel framework to segment hand gestures in RGB-D images captured by Kinect using human-like approaches for human-robot interaction. The goal is to reduce the error of Kinect sensing and consequently to improve the precision of hand gesture segmentation for robot NAO. The proposed framework consists of two main novel approaches. Firstly, the depth map and RGB image are ali...
متن کاملFINGeR: Framework for interactive neural-based gesture recognition
For operating in real world scenarios, the recognition of human gestures must be adaptive, robust and fast. Despite the prominent use of Kinect-like range sensors for demanding visual tasks involving motion, it still remains unclear how to process depth information for efficiently extrapolating the dynamics of hand gestures. We propose a learning framework based on neural evidence for processin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computación y Sistemas
دوره 20 شماره
صفحات -
تاریخ انتشار 2016